Battery Acid
Battery acid


Battery acid is sulfuric acid that has been diluted with water to attain a 37% concentration level. This particular type of acid is used in sealed lead acid batteries, however, concentration levels differenciate with some brands.Lead and lead dioxide, the active materials on the battery’s plates, react with sulfuric acid in the electrolyte to form lead sulfate. The lead sulfate first forms in a finely divided, amorphous state, and easily reverts to lead, lead dioxide and sulfuric acidwhen the battery recharges.  battery_acid


The lead–acid battery was invented in 1859 and is the oldest type of rechargeable battery. Despite having a very low energy-to-weight ratio and a low energy-to-volume ratio, its ability to supply high surge currents means that the cells have a relatively large power-to-weight ratio. These features, along with their low cost, makes it attractive for use in motor vehicles to provide the high current required by automobile starter motors.

As they are inexpensive compared to newer technologies, lead-acid batteries are widely used even when surge current is not important and other designs could provide higher energy densities. Large-format lead-acid designs are widely used for storage in backup power supplies in cell phone towers, high-availability settings like hospitals, and stand-alone power systems. For these roles, modified versions of the standard cell may be used to improve storage times and reduce maintenance requirements. Gel-cells and absorbed glass-mat batteries are common in these roles, collectively known as VRLA (valve-regulated lead-acid) batteries.




Fully discharged: two identical lead sulfate plates

In the discharged state both the positive and negative plates become lead(II) sulfate (PbSO
4), and the electrolyte loses much of its dissolved sulfuric acid and becomes primarily water. The discharge process is driven by the conduction of electrons from the negative plate back into the cell at the positive plate in the external circuit.

Negative plate reaction:

Pb(s) + HSO−4(aq) → PbSO4(s) + H+(aq) + 2e

Positive plate reaction:

PbO2(s) + HSO−4(aq) + 3H+(aq) + 2e → PbSO4(s) + 2H2O(l)

The total reaction can be written as

Pb(s) + PbO2(s) + 2H 2SO 4(aq) → 2PbSO 4(s) + 2H 2O(l)


Overcharging with high charging voltages generates oxygen and hydrogen gas by electrolysis of water, which is lost to the cell. Periodic maintenance of lead-acid batteries requires inspection of the electrolyte level and replacement of any water that has been lost.

Due to the freezing-point depression of the electrolyte, as the battery discharges and the concentration of sulfuric acid decreases, the electrolyte is more likely to freeze during winter weather when discharged.

Ion motion

During discharge, H+
produced at the negative plates moves into the electrolyte solution and then is consumed into the positive plates, while HSO−
4 is consumed at both plates. The reverse occurs during charge. This motion can be by electrically driven proton flow or Grotthuss mechanism, or by diffusion through the medium, or by flow of a liquid electrolyte medium. Since the density is greater when the sulfuric acid concentration is higher, the liquid will tend to circulate by convection. Therefore a liquid-medium cell tends to rapidly discharge and rapidly charge more efficiently than an otherwise similar gel cell.

Measuring the charge level


A hydrometer can be used to test the specific gravity of each cell as a measure of its state of charge.


A battery’s open-circuit voltage can be used to estimate the state of charge, in this case for a 12-volt battery.

Because the electrolyte takes part in the charge-discharge reaction, this battery has one major advantage over other chemistries. It is relatively simple to determine the state of charge by merely measuring the specific gravity (S.G.) of the electrolyte; the S.G. falls as the battery discharges. Some battery designs include a simple hydrometer using colored floating balls of differing density. When used in diesel-electric submarines, the S.G. was regularly measured and written on a blackboard in the control room to indicate how much longer the boat could remain submerged.

The battery’s open-circuit voltage can also be used to gauge the state of charge. If the connections to the individual cells are accessible, then the state of charge of each cell can be determined which can provide a guide as to the state of health of the battery as a whole.


Starting batteries

Automotive battery

Lead-acid batteries designed for starting automotive engines are not designed for deep discharge. They have a large number of thin plates designed for maximum surface area, and therefore maximum current output, but which can easily be damaged by deep discharge. Repeated deep discharges will result in capacity loss and ultimately in premature failure, as the electrodes disintegrate due to mechanical stresses that arise from cycling. Starting batteries kept on continuous float charge will have corrosion in the electrodes which will result in premature failure. Starting batteries should be kept open circuit but charged regularly (at least once every two weeks) to prevent sulfation.

Starting batteries are lighter weight than deep cycle batteries of the same battery dimensions, because the cell plates do not extend all the way to the bottom of the battery case. This allows loose disintegrated lead to fall off the plates and collect under the cells, to prolong the service life of the battery. If this loose debris rises high enough it can touch the plates and lead to failure of a cell, resulting in loss of battery voltage and capacity.

Deep cycle batteries

Specially designed deep-cycle cells are much less susceptible to degradation due to cycling, and are required for applications where the batteries are regularly discharged, such as photovoltaic systems, electric vehicles (forklift, golf cart, electric cars and other) and uninterruptible power supplies. These batteries have thicker plates that can deliver lesspeak current, but can withstand frequent discharging.

Some batteries are designed as a compromise between starter (high-current) and deep cycle batteries. They are able to be discharged to a greater degree than automotive batteries, but less so than deep cycle batteries. They may be referred to as “Marine/Motorhome” batteries, or “leisure batteries”.

Fast and slow charge and discharge

Charge current needs to match the ability of the battery to absorb the energy. Using too large a charge current on a small battery can lead to boiling and venting of the electrolyte. In this image a VRLA battery case has ballooned due to the high gas pressure developed during overcharge.

The capacity of a lead–acid battery is not a fixed quantity but varies according to how quickly it is discharged. An empirical relationship between discharge rate and capacity is known as Peukert’s law.

When a battery is charged or discharged, only the reacting chemicals, which are at the interface between the electrodes and the electrolyte, are initially affected. With time, the charge stored in the chemicals at the interface, often called “interface charge” or “surface charge”, spreads by diffusion of these chemicals throughout the volume of the active material.

Consider a battery that has been completely discharged (such as occurs when leaving the car lights on overnight, a current draw of about 6 amps). If it then is given a fast charge for only a few minutes, the battery plates charge only near the interface between the plates and the electrolyte. In this case the battery voltage might rise to a value near that of the charger voltage; this causes the charging current to decrease significantly. After a few hours this interface charge will spread to the volume of the electrode and electrolyte; this leads to an interface charge so low that it may be insufficient to start the car. As long as the charging voltage stays below the gassing voltage (about 14.4 volts in a normal lead-acid battery), battery damage is unlikely, and in time the battery should return to a nominally charged state.

Valve regulated

In a valve regulated lead acid battery (VRLA) the hydrogen and oxygen produced in the cells largely recombine into water. Leakage is minimal, although some electrolyte still escapes if the recombination cannot keep up with gas evolution. Since VRLA batteries do not require (and make impossible) regular checking of the electrolyte level, they have been called maintenance free batteries. However, this is somewhat of a misnomer. VRLA cells do require maintenance. As electrolyte is lost, VRLA cells “dry-out” and lose capacity. This can be detected by taking regular internal resistance, conductance or impedance measurements. Regular testing reveals whether more involved testing and maintenance is required. Recent maintenance procedures have been developed allowing “rehydration”, often restoring significant amounts of lost capacity.

VRLA types became popular on motorcycles around 1983, because the acid electrolyte is absorbed into the separator, so it cannot spill.The separator also helps them better withstand vibration. They are also popular in stationary applications such as telecommunications sites, due to their small footprint and installation flexibility.

The electrical characteristics of VRLA batteries differ somewhat from wet-cell lead–acid batteries, requiring caution in charging and discharging.

Sulfation and desulfation

Sulfated plates from 12V 5Ah battery

Lead–acid batteries lose the ability to accept a charge when discharged for too long due to sulfation, the crystallization of lead sulfate.They generate electricity through a double sulfate chemical reaction. Lead and lead dioxide, the active materials on the battery’s plates, react with sulfuric acid in the electrolyte to form lead sulfate. The lead sulfate first forms in a finely divided, amorphous state, and easily reverts to lead, lead dioxide and sulfuric acid when the battery recharges. As batteries cycle through numerous discharges and charges, some lead sulfate is not recombined into electrolyte and slowly converts to a stable crystalline form that no longer dissolves on recharging. Thus, not all the lead is returned to the battery plates, and the amount of usable active material necessary for electricity generation declines over time.

Sulfation occurs in lead–acid batteries when they are subjected to insufficient charging during normal operation. It impedes recharging; sulfate deposits ultimately expand, cracking the plates and destroying the battery. Eventually so much of the battery plate area is unable to supply current that the battery capacity is greatly reduced. In addition, the sulfate portion (of the lead sulfate) is not returned to the electrolyte as sulfuric acid. It is believed that large crystals physically block the electrolyte from entering the pores of the plates. Sulfation can be avoided if the battery is fully recharged immediately after a discharge cycle.A white coating on the plates may be visible (in batteries with clear cases, or after dismantling the battery). Batteries that are sulfated show a high internal resistance and can deliver only a small fraction of normal discharge current. Sulfation also affects the charging cycle, resulting in longer charging times, less efficient and incomplete charging, and higher battery temperatures.

Desulfation is the process of reversing the sulfation of a lead-acid battery. It is believed that desulfation can be achieved by high current pulses produced between the terminals of the battery. It is believed that this technique, also called pulse conditioning, breaks down the sulfate crystals that are formed on the battery plates. Pulses must last longer than the resonant frequency of the battery. Short pulses simply feed energy wastefully into the resistive components of this resonant circuit and virtually none into the battery. Electronic circuits are used to regulate the pulses of different widths and frequency of high current pulses. These can also be used to automate the process since it takes a long period of time to desulfate a battery fully. Battery chargers designed for desulfating lead-acid batteries are commercially available. A battery will be unrecoverable if the active material has been lost from the plates, or if the plates are bent due to over temperature or over charging.

Batteries which have sat unused for long periods of time can be prime candidates for desulfation. A long period of self-discharge allows the sulfate crystals to form and become very large. Some typical cases where lead acid batteries are not used frequently enough are planes, boats (esp sail boats), old cars, and home power systems with battery banks that are under utilized.

Some charging techniques can aid in prevention such as equalization charging and cycles through discharging and charging regularly. It is recommended to follow battery manufacturer instructions for proper charging.

SLI batteries (starting, lighting, ignition; i.e. car batteries) suffer most deterioration because vehicles normally stand unused for relatively long periods of time. Deep cycle and motive power batteries are subjected to regular controlled overcharging, hence eventually succumb to corrosion of the positive plate grids, not to sulfation.

Extreme weather can also cause sulfation in batteries. Extreme heat in the summer increases the amount of sulfates that come from batteries. Electronic components putting a constant drain on a battery also increase the amount of sulfation. Keeping a battery in a cool location and keeping it charged help prevent this.


A typical lead–acid battery contains a mixture with varying concentrations of water and acid. Sulfuric acid has a higher density than water, which causes the acid formed at the plates during charging to flow downward and collect at the bottom of the battery. Eventually the mixture will again reach uniform composition by diffusion, but this is a very slow process. Repeated cycles of partial charging and discharging will increase stratification of the electrolyte, reducing the capacity and performance of the battery because the lack of acid on top limits plate activation. The stratification also promotes corrosion on the upper half of the plates and sulfonation at the bottom.

Periodic overcharging creates gaseous reaction products at the plate, causing convection currents which mix the electrolyte and resolve the stratification. Mechanical stirring of the electrolyte would have the same effect. Batteries in moving vehicles are also subject to sloshing and splashing in the cells, as the vehicle accelerates, brakes, and turns.

Corrosion problems

Corrosion of the external metal parts of the lead–acid battery results from a chemical reaction of the battery terminals, lugs and connectors.

Corrosion on the positive terminal is caused by electrolysis, due to a mismatch of metal alloys used in the manufacture of the battery terminal and cable connector. White corrosion is usually lead or zinc sulfate crystals. Aluminum connectors corrode to aluminum sulfate. Copper connectors produce blue and white corrosion crystals. Corrosion of a battery’s terminals can be reduced by coating the terminals with petroleum jelly or a commercially available product made for the purpose.

If the battery is over-filled with water and electrolyte, thermal expansion can force some of the liquid out of the battery vents onto the top of the battery. This solution can then react with the lead and other metals in the battery connector and cause corrosion.

The electrolyte can weep from the plastic-to-lead seal where the battery terminals penetrate the plastic case.

Acid fumes that vaporize through the vent caps, often caused by overcharging, and insufficient battery box ventilation can allow the sulfuric acid fumes to build up and react with the exposed metals.

Battery Water


Water Loss, Acid Stratification and Surface Charge

Explore simple guidelines to prolong lead acid batteries by proper use.

During use, and especially on overcharge, the water in the electrolyte splits into hydrogen and oxygen. The battery begins to gas, which results in water loss. In flooded batteries, water can be added but in sealed batteries, water loss leads to an eventual dry-out and decline in capacity. Water loss from a sealed unit can eventually cause disintegration of the separator. The initial stages of dry-out can go undetected and a drop in capacity may not be immediately evident. Early detection of this failure is important.

On overcharge, a battery becomes a “water-splitting device” (electrolysis) that turns water into oxygen and hydrogen. A parallel can be made with the fuel cell, but this device does the opposite; it turns oxygen and hydrogen back to electricity and produces water. Turning water into hydrogen needs energy and in a battery this is in the form of overcharge. Converting hydrogen and oxygen back to water regenerates energy.

Acid Stratification

The electrolyte of a stratified battery concentrates at the bottom, starving the upper half of the cell. Acid stratification occurs if the battery dwells at low charge (below 80 percent), never receives a full charge and has shallow discharges. Driving a car for short distances with power-robbing accessories contributes to acid stratification because the alternator cannot always apply a saturated charge. Large luxury cars are especially prone to acid stratification. This is not a battery defect per se but the result of use. Figure 1 illustrates a normal battery in which the acid is equally distributed from top to bottom.

 normal_battery Figure 1: Normal batteryThe acid is equally distributed from the top to the bottom of the battery, providing good overall performance.

Courtesy of Cadex

Figure 2 shows a stratified battery in which the acid concentration is light on top and heavy on the bottom. The light acid on top limits plate activation, promotes corrosion and reduces the performance, while the high acid concentration on the bottom makes the battery appear more charged than it is and artificially raises the open-circuit voltage. The unequal charge across the plates reduces CCA (cold cranking amps), and starting the engine is sluggish.

 stratified_battery Figure 2: Stratified batteryThe acid concentration is light on top and heavy on the bottom. This raises the open circuit voltage and the battery appears fully charged. Excessive acid concentration induces sulfation on the lower half of the plates.Courtesy of Cadex

Allowing the battery to rest for a few days, doing a shaking motion or tipping the battery on its side helps correct the problem. Applying an equalizing charge by raising the voltage of a 12-volt battery to 16 volts for one to two hours also helps by mixing the electrolyte through electrolysis. Avoid extending the topping charge beyond its recommended time. Like many pharmaceutical products, these remedies also have a side effect of introducing an overcharge.

Acid stratification cannot always be avoided. During cold winter months, starter batteries of most passenger cars dwell at a 75 percent charge level. Knowing that motor idling and driving in gridlocked traffic does not sufficiently charge the battery, charge the battery occasionally with an external charger. If this is not practical, switch to an AGM battery. AGM does not suffer from acid stratification and is less sensitive to sulfation if undercharged than the flooded version. AGM is a bit more expensive than the flooded version but it should last longer.

Surface Charge

Lead acid batteries are sluggish and cannot convert lead sulfate to lead and lead dioxide quickly enough during charge. As a result, most of the charge activities occur on the plate surfaces. This induces a higher state-of-charge on the outside than at the inner plate. A battery with surface charge has a slightly elevated voltage. To normalize the condition, switch on electrical loads to remove about one percent of the battery’s capacity, or allow the battery to rest for a few hours. Surface charge is not a battery defect but a reversible condition resulting from charging.

Simple Guidelines for Extending Battery Life

  • Allow a fully saturated charge of 14–16 hours. Charge in a well-ventilated area.
  • Always keep lead acid charged. Avoid storage below 2.10V/cell, or at a specific gravity level below 1.190.
  • Avoid deep discharges. The deeper the discharge, the shorter the battery life will be. A brief charge on a 1 to 2 hour break during heavy use prolongs battery life.
  • Never allow the electrolyte to drop below the tops of the plates. Exposed plates sulfate and become inactive. When low, add only enough water to cover the exposed plates before charging; fill to the correct level after charge.
  • Never add acid. This would raise the specific gravity too high and cause excessive corrosion.
  • Use distilled or ionized water. Tap water may be usable in some regions.
  • When new, a deep-cycle battery may have a capacity of 70 percent or less. Formatting as part of field use will gradually increase performance. Apply a gentle load for the first five cycles to allow a new battery to format.
  • New batteries with low capacity many not perform as well as those that begin life with a high capacity. Low performers are known to have a short life. A capacity check as part of acceptance is advisable.